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The force-coupling method (FCM) represents the dynamics of low Reynolds number sus-
pension flows through a distributed, low-order, finite force-multipole expansion and pro-
vides an efficient, matrix-free method to solve the mobility problem for the particle
motion. In concentrated suspensions, strong short-range lubrication forces are generated
between particles in close proximity as fluid in the intervening gap is displaced by the rel-
ative motion of the particles. These forces, together with near-surface contact forces, play
an important role in the suspension rheology and self-diffusion of particles. However these
forces lead to ill-conditioned problems for determining the particle stresses and particle
motion in large systems of particles at higher volume fractions. A robust and effective iter-
ation scheme for determining the particle stresslets is described together with a new
scheme for including lubrication forces as near-field corrections to the FCM resistance
problem. Both the lubrication and far-field interactions are solved as fully coupled systems
in OðNp logðNpÞÞ operations, for Np particles, using preconditioned conjugate gradient solv-
ers. Numerical results for particles settling under gravity, particle pairs in linearly varying
flows and in concentrated suspensions are compared with previous theoretical results and
simulations. Numerical simulations with more than 4000 non-Brownian, spherical parti-
cles in a homogeneous shear flow provide results on the pair-distribution function and
Lagrangian velocity correlations. The extension of the methods to simulate bidisperse sys-
tems or wall-bounded suspensions are discussed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Suspensions of small particles in low Reynolds number flows have been the subject of detailed study for several decades.
They are relevant to a wide range of engineering and biological applications; materials processing, particle coating, micro-
devices for particle separation or mixing, waste treatment, blood flow and cell adhesion, to name a few. Concentrated sus-
pensions are characterized by both the long-range multi-body hydrodynamic interactions of particles and the short-range
viscous lubrication forces that act between particles near to contact. For example, the volume fraction of red blood cell in
human blood flow is typically �45% [1]. Even in nominally dilute suspensions, both long-range flow interactions and
short-range lubrication forces are important for particles in microfluidic devices where particles are confined by flow geom-
etry [2,3].

Numerical simulations of monodisperse suspension flows in uniform shear have had a large impact on the characterization
and modeling of low Reynolds number suspensions. The principal tools have been Stokesian Dy-namics (SD) [4], multipole
expansions [5–7], and boundary integral methods [8]. Lattice-Boltzmann methods (LBM) bridge both finite Reynolds number
and low Reynolds number systems and have also contributed [9,10]. The force-coupling method (FCM) [11,12] and subsequent
. All rights reserved.
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developments, bridge both Stokes flows and finite, low Reynolds number systems. FCM may be used to simulate large systems
of particles in both open and wall-bounded flows in fully three-dimensional configurations.

For the accurate simulation of Stokes flow, a numerical method should be able to capture both the long-range multi-
body interactions and the short-range lubrication interactions. Especially, the singular nature of the lubrication forces
hinders the development of numerical schemes. For example, the most straightforward and exact numerical method
would be the direct numerical simulation with an arbitrary Lagrangian–Eulerian technique [13,14]. However, consider-
ing that the lubrication forces for the normal and tangential motions between a particle pair are, respectively, � 1=�
and log �, in which a� denotes the separation distance between two particles and a is the particle radius, the grid spac-
ing should be smaller than at least 10�3a—10�4a to resolve the lubrication forces. Correspondingly, the time step size
also should be very small, of the order of 10�3—10�4, making long-term simulations of the suspension dynamics too
costly.

In Stokes flow, the hydrodynamic interactions are determined solely by the instantaneous configuration of particles.
Using the special properties of Stokes flow, several numerical methods have been developed focusing on computing hydro-
dynamic interactions rather than resolving the whole flow field. The multipole expansion is a representative approach to
consider the hydrodynamic interactions between particles. However, Cichocki and Felderhof [5] reported that the number
of multipole moments needed to resolve the hydrodynamic interaction becomes impractically large as the gap between par-
ticles becomes so small that the lubrication force plays an important role. Durlofsky et al. [15] developed the Stokesian
Dynamics method, which is a low-order multipole representation, supplemented by short-range lubrication forces, to com-
pute the position and movement of suspended particles. In the Stokesian Dynamics, they assumed the lubrication interaction
can be added in a pair-wise manner in the resistance formulation, which has become a standard approach for incorporating
the lubrication forces [6,9,16]. Sierou and Brady [17] developed the Accelerated Stokesian Dynamics (ASD) method and per-
formed the simulations of up to 1000 particles [18].

The boundary element method (BEM) is another distinguishing numerical method for Stokes flows, see for example [8].
BEM can calculate the hydrodynamic interactions in particulate suspensions with greater accuracy. However, even here
some form of lubrication or contact forces must be included between rigid particles. Ingber et al. [19] have developed a trac-
tion-corrected BEM which can accurately calculate the lubrication interaction. Although BEM can simulate wall-bounded
suspensions and suspension of particles with arbitrary shapes [20,21], due to the high computational cost most simulations
are done in 2-dimensions or with relatively small numbers of particles.

Since Nguyen and Ladd [9] implemented the lubrication interaction into the lattice-Boltzmann simulation, LBM has be-
come popular for the suspensions in the low to finite Reynolds number flows [10,22,23]. Compared to SD, LBM is computa-
tionally inexpensive and a rigid wall boundary can be included without any special treatment, while present techniques for
SD use an image method [24,25] or wall particles [26,27] to represent a rigid wall.

Maxey and Patel [11] developed the force-coupling method (FCM) for Stokes flow by replacing the Dirac delta function in
the standard multipole expansion [28] by a localized force envelope. The force-coupling method has been verified [29,12,30]
and applied in many suspension flows; for example, a sedimentation problem [31], bimodal suspensions [32], turbulent
flows [33], and biological flows [34]. Since multi-body hydrodynamic interactions are accounted for by solving the Stokes
equation, the computational cost of FCM depends on the choice of the Stokes solver. In a periodic domain, the long-range
hydrodynamic interactions can be calculated in OðNplogNpÞ operations using a Fourier spectral method, in which Np is the
number of particles. Dance and Maxey [31] performed the numerical simulations of particle sedimentation with up to
10,000 particles. The force-coupling method can be implemented with any existing flow solver by adding functions to inte-
grate and project the force envelope. Recently, Liu et al. [35] showed that the force-coupling method can simulate suspen-
sions of ellipsoidal particles by appropriately rescaling the force envelopes.

In the force-coupling method, the translational and angular velocities of a particle are estimated by the local average of
the fluid velocity weighted by the corresponding force envelopes. This approach has a computational advantage by reducing
the number of grid points necessary to resolve a particle. Once the resolution is fine enough to resolve the force envelope,
FCM can accurately reproduce the far-field solution. Typically, it requires only a=Dx ’ 3 to resolve a particle in which Dx is
the grid spacing. This is less than other methods, such as the immersed boundary method or the lattice-Boltzmann simula-
tions. On the other hand, it has a disadvantage that the near-field solution is not correctly resolved. When two particles are
close, the force-coupling method cannot reproduce the lubrication effects [12]. As a result, the force-coupling method has
been used mainly for low volume fractions, / < 0:1.

Dance and Maxey [36] developed a method to incorporate the lubrication effects into the force-coupling method based on
the exact solution of the viscous lubrication interactions of a particle–pair. They employed a predictor–corrector type ap-
proach. First, the far-field interaction is calculated by the standard FCM to estimate the lubrication force and then the lubri-
cation force is used as a feedback force in the mobility formulation. By construction, their method can reproduce the exact
particle velocities for a particle–pair interaction. At low volume fractions in which most lubrication interactions are from
particle doublets, the ‘lubrication barrier’ would be sufficient [32]. However, it is not straightforward how to generalize
the approach to include multi-body interactions, which generally requires the addition of lubrication interactions to a resis-
tance formulation [15].

The main goal of this paper is to develop an efficient method to incorporate the lubrication forces for general volume frac-
tions into the force-coupling method. The lubrication correction method developed in this paper can be easily extended to
the bidisperse suspensions or the wall-bounded flows [37].
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In Section 2, the brief introduction and the discretized equation of the force-coupling method are given and it is shown
that the force-coupling method in Stokes flow can be expressed in terms of a mobility problem. A new efficient and robust
iterative scheme to calculate the stresslet is introduced. The lubrication correction method for the force-coupling method is
developed by applying the pair-wise additivity approximation in Section 3. In Section 4, the numerical simulations of the
spheres in the infinite domain are performed to verify the present lubrication correction method. Section 5 illustrates the
numerical simulations of the concentrated suspensions. Finally, the conclusions are given in Section 6.

2. Force-coupling method

2.1. Review of the force-coupling method

The equations of the fluid motion with the force-coupling method are
$pðxÞ ¼ lr2uðxÞ þ f ðxÞ; ð1Þ
$ � u ¼ 0; ð2Þ
in which p is pressure, l is viscosity of the fluid, u is fluid velocity. The force density f is defined as
fiðxÞ ¼
XNp

n¼1

Fn
i DMðx� Y nÞ þ Gn

ij
@

@xj
DDðx� Y nÞ

� �
; ð3Þ
where Fi and Gij are the force monopole and force dipole moments, respectively. DM and DD are the FCM force envelopes
defined as
DMðxÞ ¼
1

ð2pr2
MÞ

3=2 exp � x2

2r2
M

� �
; ð4Þ

DDðxÞ ¼
1

ð2pr2
DÞ

3=2 exp � x2

2r2
D

� �
: ð5Þ
The length scales rM and rD are chosen to satisfy the overall energy budget for the flow [11,12],
a
rM
¼

ffiffiffiffi
p
p

; ð6Þ
a
rD
¼ 6

ffiffiffiffi
p
p� �1=3

: ð7Þ
These expressions for the length scales ensure that the exact Stokes drag is obtained and further that corresponding degen-
erate force quadrupoles, the linear Faxen terms for finite particle size and local flow variations are estimated with no addi-
tional terms.

Once u(x) is obtained, the velocity of each particle VnðtÞ is found by the weighted volume integral of u(x) [11],
Vn ¼
Z

uðxÞDMðx� Y nÞd3x: ð8Þ
Similarly, the angular velocity of each particle Xn is calculated from
Xn
i ¼

1
2

Z
�ijk

@uk

@xj
DDðx� Y nÞd3x: ð9Þ
The monopole coefficient Fn is the force of the particle on the fluid, which is the sum of forces on the particle other than
the hydrodynamic interaction, and include gravity, short-range inter-particle surface forces, magnetic forces, and random
Brownian forces.

The dipole coefficient Gij consists of symmetric and anti-symmetric parts. The anti-symmetric part Tij is related to the
torque exerted by the particle on the fluid,
Tij ¼
1
2
�ijkText

k ; ð10Þ
in which Text in turn denotes an external torque on the particle. The symmetric part Sij corresponds to a stresslet acting on
the fluid. Sij is found from the condition that the contribution of the stresslet to the total rate of work on the fluid is zero [12].
In other words, Sij is chosen to satisfy the constraint,
Eij ¼
1
2

Z
@ui

@xj
þ @uj

@xi

� �
DDðx� Y nðtÞÞd3x ¼ 0; ð11Þ
for each particle. Since Sij depends on the rate-of-strain, it has to be determined by an iterative method. Lomholt et al. [29]
and Dance and Maxey [36] described steepest-decent iterative methods to accomplish this.



2404 K. Yeo, M.R. Maxey / Journal of Computational Physics 229 (2010) 2401–2421
2.2. Discretized equation of FCM

Due to the linearity of the Stokes equation, there are linear relations between the force moments and the flow parameters
[38,39]. Finding the force moments from the prescribed flow parameters is called the resistance problem while in the mobil-
ity problem the flow parameters are the unknowns which are to be found from the given force moments. In this section, the
semi-discretized equation of the force-coupling method is presented conceptually in the form of the grand mobility matrix
and a more efficient conjugate gradient method to calculate Sij is described.

For simplicity, let the computational domain XD be a cubic domain in R3. XD can be a bounded domain with some bound-
ary conditions on @XD or an unbounded domain with periodic boundary conditions. We consider the fluid of a constant vis-
cosity l extends in the whole domain including the volume occupied by the particles and the fluid velocity and pressure
satisfy Eqs. (1), (2) in XD.

In Eq. (8), Vn can be approximated by a Gaussian quadrature rule,
Vn ¼
XNx

i¼1

XNy

j¼1

XNz

k¼1

uðxi;j;kÞDMðxi;j;k � Y nÞwx
i wy

j wz
k; ð12Þ
in which Nx; Ny, and Nz are, respectively, the number of grid points in the x1; x2, and x3 directions (or x; y; z), xi;j;k is the posi-
tion vector of the ði; j; kÞth grid point, and wa

i is the weight of the Gaussian quadrature in the a direction. In matrix form,
V ¼ DMWu; ð13Þ
in which the terms are

V: ð3NpÞ vector which contains the particle velocities
V ¼
V1

V2

V3

264
375; V j ¼

V1
j

V2
j

..

.

VNp

j

266666664

377777775: ð14Þ
u: ð3NgÞ vector for the fluid velocity at each grid points ðNg ¼ Nx � Ny � NzÞ.
u ¼
u1

u2

u3

264
375; uj ¼

ujðx1;1;1Þ

..

.

ujðxNx ;Ny ;Nz Þ

26664
37775: ð15Þ
W: ð3NgÞ � ð3NgÞ diagonal matrix for the weighting coefficients of the Gaussian quadrature.
W ¼
w 0 0

0 w 0

0 0 w

264
375; w ¼

wx
1wy

1wz
1 0 � � � 0

0 . .
. ..

.

..

. . .
.

0

0 � � � 0 wx
Nx

wy
Ny

wz
Nz

26666664

37777775: ð16Þ
DM: ð3NpÞ � ð3NgÞ matrix of DM at each grid points.
DM ¼
d 0 0
0 d 0
0 0 d

264
375;

d ¼
DMðx1;1;1 � Y 1Þ � � � DMðxNx ;Ny ;Nz � Y 1Þ

..

. ..
.

DMðx1;1;1 � Y Np Þ � � � DMðxNx ;Ny ;Nz � Y Np Þ

2664
3775

ð17Þ
It is worthwhile to note that, because the force envelope is a rapidly decaying function, we can assume DMðx� YÞ ¼ 0 if
jx� Y j > 3a, which makes d a sparse matrix. Hence, the matrix–matrix multiplication DMWu is done in OðNpÞ operations.

Through linearity, the flow parameters can be represented by the sum of their components. First, the fluid velocity u gen-
erated by the given force monopole is
u ¼ SDT
MF; ð18Þ



K. Yeo, M.R. Maxey / Journal of Computational Physics 229 (2010) 2401–2421 2405
in which S is a ð3NgÞ � ð3NgÞmatrix determined by the choice of a numerical scheme to solve the Stokes equations and F is
the 3Np vector containing the monopole coefficients of each particle.
F ¼
f 1

f 2

f 3

264
375; f j ¼

F1
j

..

.

FNp

j

26664
37775 ð19Þ
In terms of these, the particle velocity V from the FCM monopole calculation is
V ¼ DMWSDT
MF ¼MFV F; ð20Þ
in which MFV is the FCM mobility matrix relating the translational velocity to the force monopole. In the Stokes problem, the
symmetric positive definiteness (SPD) of the mobility matrix can be proven by the reciprocal theorem [39]. The same prop-
erty is preserved in FCM. It is trivial to show that the positive semi-definiteness of S, which is true for many numerical
schemes such as the spectral or the spectral element methods, implies the positive semi-definiteness of MFV .

Secondly, the mobility matrix for the rate-of-strain (11) in response to the symmetric force dipole (stresslet) is similarly
given by
MSE ¼ �DDWSDT
D; ð21Þ
in which DD is a ð5NpÞ � ð3NgÞ matrix to calculate the derivatives of the dipole Gaussian envelope DDðx� YÞ,
DD ¼

dx 0 �dz

dy dx 0
dz 0 dx

0 dy �dz

0 dz dy

26666664

37777775;

dx ¼

@
@x DDðx1;1;1 � Y 1Þ � � � @

@x DDðxNx ;Ny ;Nz � Y 1Þ

..

. ..
.

@
@x DDðx1;1;1 � Y Np Þ � � � @

@x DDðxNx ;Ny ;Nz � Y Np Þ

2664
3775:

ð22Þ
Here, a derivative of u is calculated by
Z
@ui

@xj
DDðx� YÞd3x ¼ �

Z
ui

@

@xj
DDðx� YÞd3x: ð23Þ
Eq. (23) holds when either u or DD has compact support in XD. In a bounded domain, although DD is not compact in XD;u
vanishes on @XD. Therefore, Eq. (23) holds also for the bounded domain.

Instead of calculating all nine components of the rate-of-strain Eij, only five independent components are evaluated
eE ¼
E11 � E33

2E12

2E13

E22 � E33

2E23

26666664

37777775: ð24Þ
Similarly, let DT be a ð3NpÞ � ð3NgÞ matrix whose entries are
DT ¼
1
2

0 dz �dy

�dz 0 dx

dy �dx 0

264
375: ð25Þ
Then, the mobility matrix for the angular velocity of particles in response to torque is given as
MTX ¼ DT WSDT
T : ð26Þ
The definitions of the other mobility matrices are as follows:
MTV ¼ DMWSDT
T ; MSV ¼ DMWSDT

D; MSX ¼ DT WSDT
D: ð27Þ
Consistent with reciprocal theorem, the FCM mobility matrices have the following symmetry relations,
MTV ¼MT
FX; MSV ¼ �MT

FE; MSX ¼ �MT
TE: ð28Þ
Applying constraints for the stresslet coefficients (11), the FCM grand mobility matrix MFCM is constructed as
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V � V1

X�X1

�eE1
264

375 ¼MFCM

F
T
S

264
375 ¼ MFV MTV MSV

MFX MTX MSX

MFE MTE MSE

264
375 F

T
S

264
375; ð29Þ
in which a sub-matrix MAB of MFCM is a mobility matrix to calculate a value B from a given coefficient A. X and T are ð3NpÞ
vectors containing the angular velocity and torques, respectively. S is a ð5NpÞ vector of the five independent stresslet coef-
ficients, S11; S12; S13; S22; S23. V1 and X1 are, respectively, the translational and angular velocities by imposed field. eE1 is
the rate-of-strain vector by the imposed field. Note that the FCM grand mobility matrix in Eq. (29) is not symmetric positive
semi-definite, as may be seen from Eq. (28). To make it SPD, the signs of the third row need to be changed.

Although FCM is formulated here in matrix form, in the actual computation, the grand mobility matrix need not be con-
structed. The computation consists of three steps:

Step 1. Calculate the force density at each grid point.
z ¼ DT
MF þ DT

T T þ DT
DS: ð30Þ
The number of operations in this step is OðNpÞ.
Step 2. Solve the Stokes equation
u ¼ Sz: ð31Þ
If the computational domain is periodic in all three directions, a Fourier-spectral method can be used to solve the Stokes
equation. Then, the Stokes equation can be solved in OðNg logðNgÞÞ operations. If the domain size is increased keeping the
volume fraction constant, Np increases linearly in proportion to Ng. Hence, the number of operations in this step is
OðNp logðNpÞÞ.

Step 3. Finally, V and X are computed by integrating u (Eqs. 8 and 9), which requires OðNpÞ operations.

As a whole, the computational cost of FCM is OðNp logðNpÞÞ.
A key aspect of solving the flow problem is the determination of the stresslet coefficients. In Eq. (29), F and T are known

while S is to be determined from the constraints for dipole moments. In other words,
�eE1 �MFEF �MTET ¼MSES ð32Þ
must be solved to obtain S. Previously, Dance and Maxey [36] suggested a steepest-decent method to solve Eq. (32). At low
volume fractions, this iterative method converges within a few iterations. However, it is found that the method converges
very slowly at high volume fractions [40]. As it is shown in Eq. (21) that �MSE is SPD, a conjugate gradient method can
be used to solve the system [41]. The solution procedures are as follows:

Step 1. Solve the Stokes equation with F, T and the initial guess S0 to calculate the residual r0 and a vector p0
r0 ¼ eE1 þ DDWS DT
MF þ DT

T T þ DT
DS0

	 

;

p0 ¼ r0:
Step 2. Solve the Stokes equation with p as a dipole coefficient,
fk ¼ �DDWSDT
Dpk:
Step 3. Update S, r, and p using the standard conjugate gradient procedure. Repeat the process until converges, i.e. krk < d
for a tolerance d
ak ¼ rk � rk=fk � pk;

Skþ1 ¼ Sk þ akpk;

rkþ1 ¼ rk � akfk;

bk ¼ rkþ1 � rkþ1=rk � rk;

pkþ1 ¼ rkþ1 þ bkpk:

ð33Þ
Step 4. Once converged, V and X are found from Eq. (29).

In that the particle velocity is calculated by solving the Stokes equation instead of constructing the grand mobility matrix,
the force-coupling method is a matrix-free method to solve the mobility problem. Representing the force-coupling method
as a matrix-free method gives more options to improve the method. For example, it was observed that in the bimodal sus-
pensions finding S takes more iterations than in the monodisperse suspensions to reach a converged result [32,40]. In the
limit of a dilute suspension, MSE is a diagonal matrix such that
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Sn
ij ¼

20
3

pla3
nEn

ij; ð34Þ
in which an is the radius of the particle n. Due to the factor a3
n in the diagonals of MSE, the condition number of MSE will in-

crease approximately as the cube of the ratio of the radius of the largest particle to the radius of the smallest particle,
KðMSEÞ � ðaL=aSÞ3, which makes it difficult to invert MSE using CG even at low volume fractions. In this case, a precondi-
tioned conjugate gradient method (PCG) is more effective [41]. From the result in the dilute limit, we can choose the pre-
conditioner as a diagonal matrix of which elements are 3=20pla3

n. Fig. 1 shows the residual L2-norm history for a
bimodal suspension in a Poiseuille flow. The size ratio ðaL=aSÞ is 2 and the volume fractions of large and small particles
are 9% ðNp ¼ 64Þ and 1% ðNp ¼ 57Þ, respectively. The particles are randomly distributed. As expected, PCG converges faster
than CG.
3. Lubrication correction for the force-coupling method

MFCM resolves terms up to the dipole moments and the many-body interactions are naturally resolved by solving the
Stokes equation. However, due to the lack of high-order terms, the force-coupling method cannot fully resolve the parti-
cle–particle interaction when the separation distance between two nearby particles is small [11,12].

Dance and Maxey [36] developed an efficient lubrication model by comparing the exact resistance relations to the numer-
ical resistance relations of FCM for particle–pair and particle–wall interactions. The lubrication model is suited to dilute sys-
tem in which most lubrication interactions come from particle doublets. To account for the multi-body lubrication
interactions, the lubrication force estimated by the sum of each particle–pair interactions is added to the mobility problem
as a feedback force. However, it turned out that simply adding the lubrication force to the mobility problem in a pairwise
manner is not enough to resolve the many-body hydrodynamic interactions accurately [15,36].

3.1. Lubrication correction method

Since Durlofsky et al. [15] suggested a lubrication approximation scheme for their Stokesian Dynamics simulation, their
approach has been successfully applied in many subsequent SD simulations [4,42,18] as well as in other simulation methods
[9,6,16]. Instead of adding high-order multipole moments in the resistance matrix, they added the near-field interaction to
the inverse of the grand mobility matrix in a pairwise manner as an approximation to the exact grand resistance matrix. The
near-field resistance function is calculated by subtracting the two-body SD resistance matrix RSD

2

	 

from the exact one ðR2Þ

obtained from the lubrication theory. Considering that L ¼ R2 � RSD
2 contains the contributions from only high-order multi-

pole moments which decay rapidly in space, the pairwise additivity of the lubrication correction is a reasonable approxima-
tion. In this section, we develop the lubrication correction method for the force-coupling method based on the pairwise
addition of the lubrication matrix.

The FCM resistance relation is
ðMFCMÞ�1 V�V1

�eE1
� �

¼
F

S

� �
; ð35Þ
in which
Num. of Iteration

|r
|

0 2 4 6 8

10-2

10-1

100

101 CG
PCG

Fig. 1. The residual 2-norm history for bidisperse suspension.
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V ¼
V
X

� �
;F ¼

F
T

� �
: ð36Þ
Following [15], the resistance matrix with the lubrication correction is
ððMFCMÞ�1 þ LÞ
V�V1

�eE1
� �

¼
F

S

� �
; ð37Þ
in which the lubrication correction matrix L is
L ¼
RL

VF RL
XF RL

EF

RL
VT RL

XT RL
ET

RL
VS RL

XS RL
ES

264
375: ð38Þ
RAB is the resistance matrix to calculate B from given A and RL is the difference between the exact two-body resistance matrix
and the FCM resistance matrix, RL ¼ R2B � RFCM

2B . Let
R ¼
RL

VF RL
XF

RL
VT RL

XT

" #
: ð39Þ
Multiplying MFCM on both sides of Eq. (37) and rearranging give
MFVFtot

�MFEF
tot � eE1

" #
¼

I þMFVR �MSV

�MFER MSE

� �
V�V1

Stot

� �
; ð40Þ
in which
Ftot ¼Fþ RL
EFE1; ð41Þ

Stot ¼ S þ RL
ESE1 � RL

VSðV�V1Þ: ð42Þ
Note that the dipole coefficient Stot obtained by solving Eq. (40) is different from the stresslet of the particle S.
Eq. (40) is not SPD. So that a GMRES or bi-conjugate gradient method is required to solve the system. However, often

these converge slowly or in some cases the convergence is not even guaranteed. Instead, in order to make the matrix
SPD, Eq. (40) is solved for Flub ¼ RðV�V1Þ instead of V�V1. Rewriting Eq. (40) yields
MFVFtot

MFEF
tot þ eE1

" #
¼ R�1 þMFV �MSV

MFE �MSE

" #
Flub

Stot

" #
: ð43Þ
The signs in the second row are changed to make the matrix symmetric.
The resistance relation for the force and torque of a particle pair is
F1

F2

T1

T2

26664
37775 ¼ l

A11 A12 B11 �B12 G11 �G12

A12 A11 B12 �B11 G12 �G11

ðB11ÞT ðB12ÞT C11 C12 H11 H12

�ðB12ÞT �ðB11ÞT C12 C11 H12 H11

266664
377775

V1 � V1ðY 1Þ
V2 � V1ðY 2Þ
X1 �X1ðY 1Þ
X2 �X1ðY 2Þ

�E1

�E1

26666666664

37777777775
: ð44Þ
Exploiting the axisymmetry of the two sphere configuration, the resistance tensors can be written in terms of several scalar
functions. Following the notation in Kim and Karrila [39],
Aab
ij =6pa ¼ XA

abdidj þ YA
abðdij � didjÞ;

Bab
ij =6pa2 ¼ YB

ab�jikdk;

Cab
ij =8pa3 ¼ XC

abdidj þ YC
abðdij � didjÞ;

Gab
kij=6pa2 ¼ XG

ab didj �
1
3

dij

� �
dk þ YG

abðdidjk þ djdik � 2didjdkÞ;

Hab
kij=8pa3 ¼ YH

abð�ikldldj þ �jkldldiÞ;
in which d ¼ r=jrj and r ¼ Y b � Y a. The analytic forms of the scalar functions are given in [36,39,43].
To calculate the FCM resistance function, first the two-particle mobility matrices for various configurations and separa-

tion distances were constructed from the FCM Oseen operator given in [11,12]. Then, the mobility matrices were inverted to
obtain the values of the resistance functions for each separation distance. Finally, the resistance functions were found by a
non-singular asymptotic matching,



Table 1
FCM res

XA
11

XA
12

XC
11

XC
12

XG
11

XG
12

YA
11

YA
12

YB
11

YB
12

YC
11

YC
12

YG
11

YG
12

YH
11

YH
12
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R ¼ C0 þ C1�þ C2�2 þ C3�3 þ C4�4; ð45Þ
in which � is the separation distance between two particles, a� ¼ jrj � 2a. Coefficients of the polynomials are given in Table 1.
An example of the FCM resistance function is shown in Fig. 2. XA

11 is a resistance function relating the force and the trans-
lational velocity for the translational motion along the sphere–sphere axis [39]. The corresponding values of XA

11 for the
force-torque-stresslet version of SD (SD-FTS) is obtained from [44]. For this resistance function, it is shown that the force-
coupling method shows the similar far-field approximation with SD-FTS. It is shown that FCM resistance function is almost
indistinguishable from the exact resistance function when r=a > 2:5. Hence, the cut-off distance for the lubrication interac-
tion is set to rc ¼ 2:8a.

Solving Eq. (43) using a conjugate gradient method requires inner and outer conjugate gradient solvers to invert both
R and the full system simultaneously. However, due to the large condition number, it is not trivial to compute R�1 using
an iterative solver. For example, in a squeezing configuration of a particle pair, only the resistance function XA is
considered
F1
k

F2
k

24 35 ¼ 6pla
XA

11 XA
12

XA
12 XA

11

24 35 V1
k

V2
k

24 35: ð46Þ
The leading-order singular term in XA is 1=� and the difference between diagonal XA
11

	 

and off-diagonal XA

12

	 

terms are

Oð10�3Þ, which makes the condition number of the matrix KðRÞ � 1=�� 103 for � small. Even when � ¼ 10�3; KðRÞ is
Oð106Þ. At high volume fractions, KðRÞ becomes too large for the matrix to be inverted using the standard conjugate gra-
dient method.

Here, we present a preconditioned conjugate gradient method in which R�1 is calculated recursively without an iterative
solver. Let P be a preconditioner for Eq. (43) defined as
P�1 ¼
R 0
0 jI

� �
; ð47Þ
in which j is a scale factor, j ¼ 20
3 pla3. The procedure is as follows

Step 1. Initialization:Initialize vectors r;w, and / from an initial estimate F0 ¼ RV0 and S0.
r0
f

r0
s

24 35 ¼ MFVðFtot �F0Þ þMSVS0 �V0

MFEðFtot �F0Þ þMSES0 þ eE1
24 35; ð48Þ

w0
f

w0
s

24 35 ¼ P�1r0 ¼
Rr0

f

jr0
s

24 35; ð49Þ

/0 ¼ w0: ð50Þ
istance functions.

C0 C1 C2 C3 C4

2.3593 �2.6950 3.4626 �2.6058 0.8310

�1.7187 2.7545 �3.4658 2.6047 �0.8308

1.0151 �0.0419 0.0576 �0.0426 0.0132

�0.1241 0.1783 �0.1524 0.0816 �0.0205

0.9670 �2.0276 2.4960 �1.7932 0.5540

�1.1651 2.0898 �2.5005 1.7946 �0.5563

1.3351 �0.6292 0.7689 �0.5602 0.1754

�0.6114 0.7157 �0.7830 0.5571 �0.1737

�0.1998 0.4427 �0.5613 0.4066 �0.1256

0.3532 �0.5293 0.5749 �0.3972 0.1238

1.1253 �0.3090 0.3944 �0.2779 0.0832

0.0965 �0.1827 0.2050 �0.1378 0.0409

0.0816 �0.2134 0.2889 �0.2144 0.0668

�0.1111 0.2423 �0.2936 0.2065 �0.0630

0.0165 �0.0669 0.1117 �0.0909 0.0294

0.1695 �0.2605 0.2386 �0.1362 0.0361
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Fig. 2. The resistance function XA
11 of the exact solution (dashed line), FCM (solid line), and SD-FTS (dash-dot line).
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Step 2. Iteration: For n ¼ 0;1; . . .
an ¼ wn � rn

/n � A/n ð51Þ

Fnþ1

Snþ1

" #
¼

Fn

Sn

" #
þ an

/n
f

/n
s

24 35; ð52Þ

rnþ1 ¼ rn � anA/n; ð53Þ

wnþ1 ¼ P�1rnþ1; ð54Þ

bn ¼ wnþ1 � rnþ1

wn � rn ; ð55Þ

/nþ1 ¼ wnþ1 þ bn/n; ð56Þ
where
A ¼
R�1 þMFV �MSV

MFE �MSE

" #
: ð57Þ
Step 3. Repeat step 2 until krnþ1k2
6 d for a tolerance level d.
In step 2, A/n involves computing R�1/n
f . From the initialization step, it is obvious that
R�1/0
f ¼ R�1w0

f ¼ r0
f : ð58Þ
Similarly, for n P 1, there is a general recursive solution,
R�1/n
f ¼ R�1 wn

f þ bn�1/n�1
f

	 

¼ rn

f þ bn�1 R�1/n�1
f

	 

¼ rn

f þ
Xn�1

i¼0

Yn�1

j¼i

bj

 !
ri

f : ð59Þ
Once Flub is found, V can be computed from either
V ¼V1 þR�1Flub; ð60Þ
or
V ¼V1 þMFVðFtot �FlubÞ þMSVStot: ð61Þ
Note that at low volume fractions, there are many particles which do not have particles in their neighborhood. In that case,
the number of degrees of freedom of Eq. (60) is 6� Nc and not 6� Np, in which Nc denotes the number of particles which
have at least one particle within the cut-off distance ðrc ¼ 2:8aÞ. Therefore, to calculate V for those particles which do
not have any neighboring particles, we need to solve Eq. (61).
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4. Results I: particles in an infinite domain

To verify the lubrication correction method developed in Section 3, several numerical simulations of spheres in an infinite
domain are performed. The FCM mobility matrix is constructed by using the FCM Oseen tensors derived in [12].

4.1. Chain of particles settling under gravity

First, consider two horizontally separated spheres settling under gravity (see inset of Fig. 3). The hydrodynamic interac-
tion induces counter-rotation of the particle pair. Near contact, the counter-rotation is frozen by the lubrication forces. The
angular velocity calculated from the present lubrication correction (FCM-LUB) and FCM with just monopole and dipole terms
(FCM-MD) are shown in Fig. 3. It is shown that the present lubrication correction method can reproduce the angular velocity
with good accuracy when r=a < 2:25. At r ¼ 2:1, the angular velocity obtained by Ganatos et al. [45] is 0.137 and the present
method gives 0.139. For the resistance functions that have a leading-order log � singularity (YA; YB; YC ; YG, and YH), the
near-field form is used only when � < 0:05 and the far-field form is used for 0:05 < � < 0:8. The exact resistance functions
can be found in [36,43,39].

In a second example, the settling of a horizontal chain of seven spheres is calculated using FCM-LUB. The configuration of
the particles is illustrated in Fig. 4 with the relative gap between the particles � ¼ 0:005. The drag coefficient k and angular
velocity X for each particle are compared to those obtained by Ganatos et al. [45] and FTS-SD [15]. The results are shown in
Fig. 5. FCM with the present lubrication correction shows similar accuracy as FTS-SD. For the drag coefficient the maximum
difference of k between FCM-LUB and [45] is about 1%. The lubrication model of [36] shows relatively larger error, particu-
larly for the particle 3. It was noted that the error at particle 3 may come from the pair-wise addition of the lubrication force
in the mobility problem. This is consistent with the argument of Durlofsky et al. [15] that adding lubrication correction terms
to the resistance matrix in a pair-wise manner and inverting the resistance matrix to solve the mobility problem better re-
solves many-body interactions as compared to adding the lubrication forces to the mobility problem.

4.2. Particles in a pure straining field

The interactions of a particle–pair in a linear flow field can be evaluated analytically and there are many solutions avail-
able in the literature [39,46,47], which are suitable for benchmarking a numerical scheme. In this section, the numerical
computations for a pair of force-free and torque-free spheres in a pure straining flow are performed and the results are com-
pared with the analytical solutions.
r/a

Ω

2 2.2 2.4 2.6 2.8 3
0.06

0.08

0.1

0.12

0.14

0.16

Fig. 3. Comparison of angular velocity for a pair of equal spheres with horizontal separation. �, Ganatos et al. (1978); N, FCM-LUB; –, FCM-MD.
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Fig. 4. Illustration of the horizontal chain of seven spheres.
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Fig. 5. Comparison of (a) the drag coefficient k ¼ F=6plaU and (b) angular velocity. �, Ganatos et al. (1978); M, Durlofsky et al. (1987); +, FCM-LUB; h,
Dance and Maxey (2003).
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Consider a particle pair in a uniform straining flow (see Fig. 6),
E1ij ¼ Edij11 �
1
2

Eðdij22 þ dij33Þ; ð62Þ

u1i ¼ E1ij xj; ð63Þ
in which dijkl is 1 if all the indices are the same and 0 otherwise. Batchelor and Green (B&G) [47] solved this problem ana-
lytically by using bispherical harmonics. When ri ¼ rdi1 and � is small, the relative velocity and stresslet in B&G are
Vr ¼ ð1� AðrÞÞEr; ð64Þ

S11 ¼
20
3

pla3E 1þ K þ 4
3

Lþ 2
3

M
� �

; ð65Þ
in which
AðrÞ ¼ 1� 4:077�þ Oð�3=2Þ; ð66Þ
3
2

K þ 2LþM ¼ 1:366þ Oð�Þ: ð67Þ
The relative velocities from B&G and FCM-LUB are shown in Table 2. At � ¼ 10�2, the error is about 7%. However, due to
the Oð�3=2Þ error of AðrÞ in B&G, it is difficult to assess the error of numerical method at this separation distance. As � de-
creases, the difference between B&G and the present simulation becomes smaller. When � ¼ 10�3, the difference between
B&G and FCM-LUB is about 1%.
x1 /a

x 2
/a

Fig. 6. Illustration of a particle–pair in a pure straining flow.



Table 2
Relative velocity of two spheres in a straining flow when E ¼ 1.

� B&G FCM

0.01 0.08195 0.07647
0.005 0.04087 0.03931
0.001 0.008158 0.008071
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The stresslet of a sphere is calculated from Eq. (42),
Table 3
FCM res

XM
11

XM
12

YM
11

YM
12

ZM
11

ZM
12
S ¼ Stot � RL
ESE1 þ RL

VSðV�V1Þ; ð68Þ
in which RL
VS ¼ � RL

EF

	 
T
. Stot is obtained by solving the Eq. (40). To estimate S, the fourth-order tensor RL

ES needs to be con-
structed. The FCM resistance functions XM ; YM , and ZM are given in Table 3.

The stresslet given in B&G is
S11 ¼ 40:017a3Eþ Oð�Þ: ð69Þ
Using the lubrication correction, FCM gives S11 ¼ 39:226a3E and 39:582a3E when � ¼ 0:01 and 0.005, respectively. As ex-
pected, the results get closer to B&G as � decreases, and the differences are consistent with an Oð�Þ scaling.

4.3. Relative motion of a particle pair in a linear shear flow

If the surface of spheres are perfectly smooth and the interaction between a particle–pair is from purely hydrodynamics,
the trajectories of the particle–pair should be time reversible as a consequence of the linearity of the Stokes equations. Con-
sider a particle–pair in a shear flow, u11 ðyÞ ¼ _cy, in which _c is a shear rate, with the initial center-to-center distances
DxI ¼ dx; DyI ¼ dy, and DzI ¼ dz. Then, at the downstream location DxF ¼ �dx, the center-to-center distances in y- and z-direc-
tions should be DyF ¼ dy and DzF ¼ dz. If dy and dz are small, the minimum separation distance during a tumbling motion of
the particle pair can be very small. Da Cunha and Hinch [48] observed that for dx=a ¼ 10, dy=a ¼ dz=a ¼ 0:1, the minimum
separation is 4:75� 10�5a. In physical systems, however, the surface roughness of particles breaks the reversibility, resulting
in a net drift after the ‘‘collision”. Smart and Leighton [49] measured the surface roughness of particles ranging from 43 to
6350 lm in diameter and found these to be the order of 10�2—10�3a.

Corresponding numerical simulations of a particle–pair in a linear shear flow are performed. dx=a ¼ �10 and dz=a ¼ 0 are
used for all simulations. The time advancement was carried out by using a fourth-order Adam-Bashforth method with time
step size dt ¼ 10�3. To prevent any overlap, an elastic contact force proposed by Dance et al. [30] is used. The contact force to
the jth particle by the ith particle is given by
F ij ¼ �Fref
R2

ref�jrj
2

R2
ref�4a2

� �2
r
jrj if jrj < Rref

0 otherwise;

8><>: ð70Þ
in which r ¼ Y i � Y j. Although in most numerical simulations a contact force is used to prevent the overlapping of particles
as a result of finite dt, physically the use of a contact force is to model the surface roughness of particles [48].

Fig. 7 shows the relative trajectories and the separation distances of the two equal spheres in the shear flow for
DyI=a ¼ 0:2; 0:4; 0:6; and 0:7 when Rref ¼ 2:001. When DyI=a ¼ 0:7, the minimum separation is �min ’ 0:0015. Since the
contact force is not activated, the trajectory shows the fore-after symmetry. For DyI=a 6 0:6, it is observed that the symmetry
is broken and there is a net displacement in the vertical direction. From the Table 4, it can be deduced that DyF will be the
same if DyI=a < 0:631. Using a traction-corrected boundary element method, Ingber et al. [19] observed that DyF=a ¼ 0:71 for
DyI=a < 0:71, when the surface roughness of a particle is 5� 10�4a. In their simulation, the minimum separation was
�min ¼ 1:03� 10�3. If � < �min, the normal motion of a particle pair is restricted. On the other hand, in the present simulation,
the contact force is activated when � < 10�3 and �min ’ 0:97� 10�3, which may contribute to the quantitative difference.
istance functions ðXM ;YM ; ZMÞ.

C0 C1 C2 C3 C4

�1.4235 0.9133 �1.0670 0.7197 �0.2120

�0.5911 0.9453 �0.9702 0.6307 �0.1852

�1.0787 0.1991 �0.2617 0.1902 �0.0584

0.0806 0.0370 �0.1294 0.0990 �0.0283

�1.0035 0.0145 �0.0253 0.0221 �0.0075

0.0593 �0.1281 0.1400 �0.0855 0.0229



x/a

y/
a

0

1

2

3

x/a

ε

-10 -5 0 5 10 -3 -2 -1 0 1 2 3

10-3

10-2

10-1

100
a b

Fig. 7. (a) Relative trajectory of the centers of two equal spheres and (b) separation distances for different initial positions, DyI . The length scale of the
contact force Rref ¼ 2:001a. From top to bottom: DyI ¼ 0:7; 0:6; 0:4; and 0:2.

Table 4
Upstream DyI and downstream center-to-center distances DyF for Rref ¼ 2:001.

DyI=a DyF=a

0.2 0.631
0.4 0.631
0.6 0.631
0.7 0.700
0.8 0.800
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The relative trajectories for Rref ¼ 2:0001 is illustrated in Fig. 8. It is observed that �min ¼ 1:007783� 10�4 for DyI=a ¼ 0:2.
Since �min > Rref , the contact force is not used and the trajectories are symmetric.
5. Results II: concentrated suspensions

In this section, the numerical simulation of concentrated suspensions in a periodic cell are illustrated. Three problems are
considered; a simple cubic lattice of neutrally buoyant particles, high-frequency dynamic viscosity, and sheared suspensions
of non-colloidal particles. A Fourier spectral method is used to solve the Stokes equations. Periodic boundary conditions are
used in all directions to model the infinite suspension. The length of the computational domain is kept constant, 2p, in all
directions. The number of Fourier modes is determined by the particle radius. In FCM, as long as the force envelope is re-
solved the numerical result is insensitive to Dx. The computational resolution is kept a=Dx ’ 3. The lubrication correction
is used when the distance between particle centers is less than 2:8a.
x/a
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Fig. 8. Relative trajectory of the centers of two equal spheres for different initial positions, DyI . The length scale of the contact force is Rref ¼ 2:0001a. From
top to bottom: DyI ¼ 0:4 and 0:2.
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5.1. Rheology of particles in a periodic cell

Nunan and Keller [50] showed that the bulk deviatoric stress tensor rij is related through the effective viscosity tensor l�ijkl

to shear rate _c as
Fig. 9.
The das

Table 5
Simulat

/

a
Np
rij ¼ 2l�ijkl
_ckl; ð71Þ
in which _ckl denotes the shear rate. For a cubic lattice of spheres, the effective viscosity tensor is given by [50],
l�ijkl ¼
1
2
lð1þ bÞ dikdjl þ dildjk �

2
3

dijdkl

� �
þ lða� bÞ dijkl �

1
3

dijdkl

� �
; ð72Þ
in which a and b are functions of the volume fraction. In the case of pure straining flow, the effective viscosity tensor is a
function of a only, while in the linear shear flow only b survives.

Fig. 9 shows a and b for the simple cubic lattice of neutrally buoyant particles. FCM results are compared with the low
volume fraction asymptotic solution given in [50] and the high volume fraction asymptotic result by Hoffman [51]. At
low / where far-field interaction plays the major role, the distance between particles are larger than the cut-off distance
of the lubrication correction and FCM-MD alone can reproduce the asymptotic solution. In the intermediate region, FCM-
LUB predicts slightly higher effective viscosity, which is also observed in SD simulations [17]. However, the difference with
the asymptotic results becomes smaller and smaller as /! /max.
5.2. High-frequency dynamic viscosity

The high-frequency dynamic viscosity l� is evaluated using the Monte Carlo approach. For each volume fraction /, the
shear viscosity is obtained by averaging over 1000 different random particle configurations. When / 6 0:35, the random
configuration can be achieved by using a uniform random number generator. For / > 0:35, body centered cubes are used
initially to locate particles. Then, small random perturbations are introduced to generate the random configurations. The
minimum distance between particles is kept larger than 10�5a. The contact force is not used for the Monte Carlo simulation.
The simulation parameters are listed in Table 5. The number of grid points are 643 for all static simulations. In Fig. 10, l�
computed by the present FCM is compared with the empirical formula by Krieger and Dougherty [52], analytical results
by Batchelor and Green (B&G) [47], and the multipole-moment simulation by Ladd [6], which is used as the reference.
The Stokes–Einstein estimate is obtained in the dilute regime and B&G made /2 correction in the semi-dilute regime.
φ

α

0 0.2 0.4 0.6
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The effective viscosity functions (a) a and (b) b in the functions of the volume fraction / for the simple cubic lattice. The circle indicates FCM results.
hed and solid lines are, respectively, the high and low concentration asymptotic solutions.

ion parameters of the random static simulations.

0.1 0.2 0.3 0.35 0.4 0.45 0.5

0.35 0.35 0.35 0.35 0.38 0.395 0.409
138 276 414 483 432 432 432
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Fig. 10. Shear viscosity in terms of volume fraction. Solid line, Krieger and Dougherty (1959); dashed line, Stokes–Einstein estimate; dash-dot line,
Batchelor and Green (1972); M, Ladd (1990); �, FCM-LUB; h, FCM-MD.
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1. Stokes–Einstein estimate:
Table 6
Simulat

/

0.3

0.4
l�=l ¼ 1þ 5
2

/: ð73Þ
2. Batchelor and Green (1972):
l�=l ¼ 1þ 5
2

/þ 5:2/2: ð74Þ
The empirical formula by Krieger and Dougherty is given by
l�=l ¼ 1� /
/m

� ��½g�/m

; ð75Þ
in which /m is the maximum random packing volume fraction and ½g� is a rheological fitting parameter. Following Stickel and
Powell [53], ½g� ¼ 5

2 and /m ¼ 0:63 are used. It is observed that, the FCM-MD result is close to B&G. Since FCM-MD is a far-field
approximation, it can reproduce the semi-dilute solution. At high /, the deviation from the exact values becomes larger. It is
shown that FCM-LUB gives accurate results. Although FCM-LUB predicts slightly higher l� compared to [6] when / > 0:4, the
difference is about 5% at / ¼ 0:45.

5.3. Sheared suspensions

Dynamic simulations are performed for / ¼ 0:3 and 0:4. In order to impose the periodic boundary condition in conjunc-
tion with the shear flow, the computational mesh is deformed with respect to the strain ð _ctÞ. This is done using the moving
coordinate system proposed by Rogallo [54]. As the deformation of the computational mesh gets larger, more grid points are
needed to integrate the force envelope with the same accuracy as for a non-deformed mesh system. To prevent this problem,
remeshing is performed at every _ct ¼ 0:5. For the comparison with the prior simulation results [18], a conservative, short-
range contact force of the exponential form
F ij
p ¼ �Fref

se�s�

1� e�s�
d ð76Þ
is used. For all dynamic simulations, s ¼ 100 and Fref s ¼ 6pl _ca2. Using these parameters, it is observed that the minimum
values of � are about 0.001 and 0.0005 at / ¼ 0:3 and 0:4, respectively. Table 6 shows the simulation parameters used to
compute the statistics.
ion parameters of the dynamic simulations.

Ng Np a Dt

1283 4337 0.16 2� 10�3

963 1458 0.2532 2� 10�3
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We define a mean-square residual as
kRk2
M ¼

1
Np

X6Np

i¼1

jrf ;ij2 þ
X5Np

i¼1

jrs;ij2
 !

; ð77Þ
in which rf and rs are the residuals of Flub and Stot , respectively. The tolerance level d is chosen as 10�3—10�4 to ensure that
the error of the particle velocity is Oð10�3—10�4Þ. Using the particle velocities in the previous time step as an initial estimate,
the system is solved in under 7—8 iterations. In the concentrated suspensions, due to the complex multi-body hydrodynamic
interactions and the elastic contact forces, the trajectories of particles exhibit chaotic motions, which contributes to the ran-
dom fluctuation of macroscopic variables such as the particle stresses. As a result, a small error in the calculation of the par-
ticle velocities is indistinguishable from the statistical noise so that setting very low tolerances does not add to the overall
accuracy of a simulation. However, if the tolerance level is set too large, overlap of particles can happen as � is small.

The simulations were performed on a 2.6 GHz AMD Opteron Linux cluster. The computation time for one time step is shown
in Fig. 11. All the computations were done using 16 processors and the computation time is the average over 500dt. It is observed
that the computation time is scaled as� Np rather than� NplogNp. This Np-scaling is the result of the large operation counts in
the numerical integration of the force envelope and the projection of the force monopole and dipole to the computational mesh.
For example, at / ¼ 0:3 (Table 6), the number of floating-point operations of the Stokes solver using a Fourier-spectral method
isOð107Þwhile the numerical integrations to calculate V and E take Oð108Þ operations. This integration and projection processes
take about 60% of the total computation time while the Stokes solver is about 15%. About 15% of the total computation time is
spent on the communications between processors. In the present implementation, MPI collective communications are used in
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Fig. 11. Computation time of one time step for / ¼ 0:3.
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the FFT and integration–projection processes. By changing the collective communications to the non-blocking communications
and overlapping with computations, further speed-up can be achieved.
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Fig. 13. Projection of the pair-distribution function onto the x–y plane. The darker the contour, the higher the probability is.
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Fig. 12 shows the time history of the deviatoric stress tensor by hydrodynamic interactions;
Fig. 15.
/ ¼ 0:4
hrHi ¼ Np

V
hSi; ð78Þ
in which V is the volume of the sampling domain, in this case the computational domain, and h�i denotes ensemble average.
Time is normalized by the shear rate, _c. Initial configurations were generated from the body centered cubes with small ran-
dom perturbations. rH

12 drops sharply at first and starts increasing after _ct ’ 1 as the microstructure develops in response to
the shear flow. To remove the effect of this initial transition, only data for _ct > 20 are used to estimate the statistics.

Fig. 13 shows the pair-distribution function projected onto the x� y plane for / ¼ 0:4, in which x and y denote the flow
and the velocity gradient directions, respectively. In Stokes flow with perfectly smooth hard sphere suspensions, the pair-
distribution function should be symmetric due to the reversibility of Stokes equation. However, as shown in Fig. 7, the
net displacement caused by the contact force breaks the fore-after symmetry and the probability of finding another particle
in the extensive strain direction becomes smaller than the compressible strain direction. The result for the pair-distribution
function is consistent with that of Sierou and Brady [42].

A key element for the shear-induced random dispersion of particles in a suspension is the velocity auto-correlation, which
is defined as
qVi ðsÞ ¼ hViðtÞViðt þ sÞi
hViðtÞ2i

: ð79Þ
Fig. 14 shows the velocity auto-correlation for two volume fractions, / ¼ 0:3 and 0:4. At the larger volume fraction, the
velocity auto-correlation decays faster and the magnitude of the negative peak decreases, which is consistent with the earlier
results of [55].
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.



Table 7
Diffusion coefficients in y and z directions.

/ Dy Dz

0.3 0.030 0.016
0.4 0.059 0.037
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Fig. 15 shows the mean squared displacement normalized by a2,
rXiðtÞ ¼
hðYiðtÞ � Yið0ÞÞ2i

a2 : ð80Þ
It is well known that at short times in which the particle motion is strongly correlated with the initial configuration rX in-
creases as � t2, while at longer times a steady behavior is established and rX shows linear growth with time,
rXiðtÞ � hV2
i it2; t 	 TLi; ð81Þ

rXiðtÞ � 2hV2
i iTLit; t 
 TLi; ð82Þ
in which TLi is the integral timescale in i-direction,
TLi ¼
Z 1

0
qVi ðsÞds: ð83Þ
The diffusivity Di is given as
Di ¼ hV2
i iTLi: ð84Þ
The diffusivity can be estimated by two methods. One is from the integral of the velocity auto-correlation function, as shown
in Eq. (84) and the other is by estimating the long-term slope of rX , which should yield the same results. Table 7 shows the
diffusion coefficients evaluated from Eq. (84). The agreement with the previous simulations [18] is quite good.

There is a large scatter in the diffusion coefficients in the literature due to the variation in experimental conditions. In
[18], it is found that the diffusion coefficients from SD simulations are almost half of the experimental results. In the exper-
iments, several poorly quantified features, such as surface roughness, surfactant or steric forces, and residual Brownian
forces, strongly affect the motion close to contact. In the numerical simulations, the contact force is used to model these ef-
fects. Using the contact force (70) with large cut-off distance ðRref ¼ 2:2Þ, Abbas et al. [32] could obtain the diffusion coeffi-
cients similar to the experimental results. On the other hand, when using the lubrication model by Dance and Maxey [36],
the diffusion coefficients were only about 2/3 of those with the large contact forces. Although there are many studies on the
role of contact forces on suspensions [19,32,56,55,48], the choice of a contact force to represent the underlying physics cor-
rectly is still an open question.
6. Conclusions

In this paper, a new formulation has been derived for the inclusion of lubrication forces between particles in the simu-
lation of viscous suspensions using the force-coupling method. These forces are evaluated on the basis of pairwise additions
to the resistance formulation, the inverse of the natural mobility formulation provided by FCM. This provides a more reliable
estimate of these effects for concentrated suspensions than using pairwise addition to the mobility problem. Efficient and
robust iterative methods are described for solving for the particle stresslets and for lubrication effects in which the problems
are written in terms of a symmetric positive definite system. The fully coupled lubrication and far-field interactions are then
obtained efficiently through a suitably chosen preconditioned conjugate gradient method, in which the inverse of the ill-con-
ditioned resistance matrix is calculated by a recursive formula. Solving the full system requires typically less than 7–8 iter-
ations while ensuring that the errors in the particle velocity are Oð10�3Þ or less.

These methods are tested for the various particle–pair interactions and in concentrated suspensions. For the computation
of dynamically evolving, sheared suspensions of neutrally buoyant particles, numerical simulations with Oð1000Þ particles
are performed. It is shown that the results are consistent with the previous theories and numerical simulations. It is also
shown that the computational cost for homogeneous suspensions in a periodic cell, using a Fourier spectral method, is close
to OðNpÞ. The results also illustrate the importance of near-contact repulsion forces in non-Brownian suspensions and their
contribution to the irreversible interaction of particles.

The methods described here may be readily extended to bidisperse or polydisperse systems of particles. For each combi-
nation of particles, the corresponding lubrication forces between the particles must be specified as in (44) and as given by
[39]. Similarly, the FCM resistance functions for near-field interaction of each combination must be determined as in (45)
and a table constructed similar to Table 1. The basic procedures follow as before. The scale coefficient j in the preconditioner
(47) should be adjusted as in Eq. (34).

The force-coupling method can be easily implemented with any existing numerical Stokes or Navier–Stokes solver. As
such, the simulation of inhomogeneous and wall-bounded suspensions are possible with FCM. The no-slip boundary condi-
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tion at a fixed rigid boundary is then naturally incorporated in the numerical simulation. Lubrication forces must be specified
for the interaction of particles with a rigid wall following the same general procedures. There is a minor complication in that
the force envelopes (4), (5) are not compact and may extend outside of the flow domain even though the particles are full
contained within the domain. The standard procedure has been to truncate the envelopes at the domain boundaries [12]. A
more robust implementation, where a simple image particle is introduced, is described by Yeo and Maxey [37]. The imple-
mentation for these procedures for Couette flow is also described.
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